PC gaming technology




Hardwareedit

Modern computer games place great demand on the computer's hardware, often requiring a fast central processing unit (CPU) to function properly. CPU manufacturers historically relied mainly on increasing clock rates to improve the performance of their processors, but had begun to move steadily towards multi-core CPUs by 2005. These processors allow the computer to simultaneously process multiple tasks, called threads, allowing the use of more complex graphics, artificial intelligence and in-game physics.

Similarly, 3D games often rely on a powerful graphics processing unit (GPU), which accelerates the process of drawing complex scenes in realtime. GPUs may be an integrated part of the computer's motherboard, the most common solution in laptops, or come packaged with a discrete graphics card with a supply of dedicated Video RAM, connected to the motherboard through either an AGP or PCI-Express port. It is also possible to use multiple GPUs in a single computer, using technologies such as NVidia's Scalable Link Interface and ATI's CrossFire.

Sound cards are also available to provide improved audio in computer games. These cards provide improved 3D audio and provide audio enhancement that is generally not available with integrated alternatives, at the cost of marginally lower overall performance. The Creative Labs SoundBlaster line was for many years the de facto standard for sound cards, although its popularity dwindled as PC audio became a commodity on modern motherboards.

Physics processing units (PPUs), such as the Nvidia PhysX (formerly AGEIA PhysX) card, are also available to accelerate physics simulations in modern computer games. PPUs allow the computer to process more complex interactions among objects than is achievable using only the CPU, potentially allowing players a much greater degree of control over the world in games designed to use the card.

Virtually all personal computers use a keyboard and mouse for user input, but there are exceptions. During the 1990s, before the keyboard and mouse combination had become the method of choice for PC gaming input peripherals, there were other types of peripherals such as the Mad Catz Panther XL, the First-Person Gaming Assassin 3D, and the Mad Catz Panther, which combined a trackball for looking / aiming, and a joystick for movement. Other common gaming peripherals are a headset for faster communication in online games, joysticks for flight simulators, steering wheels for driving games and gamepads for console-style games.

Softwareedit

Computer games also rely on third-party software such as an operating system (OS), device drivers, libraries and more to run. Today, the vast majority of computer games are designed to run on the Microsoft Windows family of operating systems. Whereas earlier games written for DOS would include code to communicate directly with hardware, today application programming interfaces (APIs) provide an interface between the game and the OS, simplifying game design. Microsoft's DirectX is an API that is widely used by today's computer games to communicate with sound and graphics hardware. OpenGL is a cross-platform API for graphics rendering that is also used. The version of the graphics card's driver installed can often affect game performance and gameplay. In late 2013, AMD announced Mantle, a low-level API for certain models of AMD graphics cards, allowing for greater performance compared to software-level APIs such as DirectX, as well as simplifying porting to and from the PlayStation 4 and Xbox One consoles, which are both built upon AMD hardware. It is not unusual for a game company to use a third-party game engine, or third-party libraries for a game's AI or physics.

Multiplayeredit

Local area network gamingedit

Multiplayer gaming was largely limited to local area networks (LANs) before cost-effective broadband Internet access became available, due to their typically higher bandwidth and lower latency than the dial-up services of the time. These advantages allowed more players to join any given computer game, but have persisted today because of the higher latency of most Internet connections and the costs associated with broadband Internet.

LAN gaming typically requires two or more personal computers, a router and sufficient networking cables to connect every computer on the network. Additionally, each computer must have its own copy (or spawn copy) of the game in order to play. Optionally, any LAN may include an external connection to the Internet.

Online gamesedit

Online multiplayer games have achieved popularity largely as a result of increasing broadband adoption among consumers. Affordable high-bandwidth Internet connections allow large numbers of players to play together, and thus have found particular use in massively multiplayer online role-playing games, Tanarus and persistent online games such as World War II Online.

Although it is possible to participate in online computer games using dial-up modems, broadband Internet connections are generally considered necessary in order to reduce the latency or "lag" between players. Such connections require a broadband-compatible modem connected to the personal computer through a network interface card (generally integrated onto the computer's motherboard), optionally separated by a router. Online games require a virtual environment, generally called a "game server". These virtual servers inter-connect gamers, allowing real time, and often fast-paced action. To meet this subsequent need, Game Server Providers (GSP) have become increasingly more popular over the last half decade.when? While not required for all gamers, these servers provide a unique "home", fully customizable, such as additional modifications, settings, etc., giving the end gamers the experience they desire. Today there are over 510,000 game servers hosted in North America alone.

Emulationedit

Emulation software, used to run software without the original hardware, are popular for their ability to play legacy video games without the platform for which they were designed. The operating system emulators include DOSBox, a DOS emulator which allows playing games developed originally for this operating system and thus not compatible with a modern-day OS. Console emulators such as Nestopia and MAME are relatively commonplace, although the complexity of modern consoles such as the Xbox or PlayStation makes them far more difficult to emulate, even for the original manufacturers. The most technically advanced consoles that can currently be successfully emulated for commercial games on PC are the PlayStation 2 using PCSX2, and the Nintendo Wii U using the Cemu emulator. A PlayStation 3 emulator named RPCS3 is in development, although it can currentlywhen? only run small Homebrew games and certain old arcade titles that were originally ported to the PS3 from older platforms.

Most emulation software mimics a particular hardware architecture, often to an extremely high degree of accuracy. This is particularly the case with classic home computers such as the Commodore 64, whose software often depends on highly sophisticated low-level programming tricks invented by game programmers and the demoscene.

Comments

Popular posts from this blog

PC game

Computer games museums

History